skip to main content


Search for: All records

Creators/Authors contains: "Pickart, R.S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In 2020, the Woods Hole Oceanographic Institution (WHOI) celebrates 90 years of research, education, and exploration of the World Ocean. Since inception this has included Arctic studies. In fact, WHOI’s first technical report is on the oceanographic data obtained during the submarine “Nautilus” polar expedition in 1931. In 1951 and 1952, WHOI scientists supervised the collection of hydrographic data during the U.S. Navy SkiJump I & II expeditions utilizing ski-equipped aircraft landings in the Beaufort Sea, and inferred the Beaufort Gyre circulation cell and existence of a mid-Arctic ridge. Later classified studies, particularly concerning under-ice acoustics, were conducted by WHOI personnel from Navy and Air Force ice camps. With the advent of simple satellite communications and positioning, WHOI oceanographers began to deploy buoys on sea ice to obtain surface atmosphere, ice, and upper ocean time series data in the central Arctic beginning in 1987. Observations from these first systems were limited technologically to discrete depths and constrained by power considerations, satellite throughput, as well as high costs. As technologies improved, WHOI developed the drifting Ice-Tethered Profiler (ITP) to obtain vertically continuous upper ocean data several times per day in the ice-covered basins and telemeter the data back in near real time to the lab. Since the 1980s, WHOI scientists have also been involved in geological, biological, ecological and geochemical studies of Arctic waters, typically from expeditions utilizing icebreaking vessels, or air supported drifting platforms. Since the 2000s, WHOI has maintained oceanographic moorings on the Beaufort Shelf and in the deep Canada Basin, the latter an element of the Beaufort Gyre Observing System (BGOS). BGOS maintains oceanographic moorings via icebreaker, and conducts annual hydrographic and geochemical surveys each summer to document the Beaufort Gyre freshwater reservoir that has changed significantly since earlier investigations from the 1950s–1980s. With the experience and results demonstrated over the past decades for furthering Arctic research, WHOI scientists are well positioned to continue to explore and study the polar oceans in the decades ahead 
    more » « less
  2. We describe the high-frequency variability in the North Icelandic Jet (NIJ) on the Iceland Slope using data from the densely instrumented Kögur mooring array deployed upstream of the Denmark Strait sill from September 2011 to July 2012. Significant sub-8-day variability is ubiquitous in all moorings from the Iceland slope with a dominant period of 3.6 days. We attribute this variability to topographic Rossby waves on the Iceland slope with a wavelength of 62 ± 3 km and a phase velocity of 17.3 ± 0.8 km/day−1 directed downslope (−9◦ relative to true-north). We test the theoretical dispersion relation for these waves against our observations and find good agreement between the predicted and measured direction of phase propagation. We additionally calculate a theoretical group velocity of 36 km day−1 directed almost directly up-slope (106◦ relative to true-north) that agrees well with the propagation speed and direction of observed energy pulses. We use an inverse wave tracing model to show that this wave energy is generated locally, offshore of the array, and does not emanate from the upstream or downstream directions along the Iceland slope. It is hypothesized that either the meandering Separated East Greenland Current located seaward of the NIJ or intermittent aspiration of dense water into the Denmark Strait Overflow are the drivers of the topographic waves. 
    more » « less
  3. null (Ed.)